Comment installer Flask avec Nginx et Gunicorn sur Debian

12

Flask is a microframework written in Python for developing modern web applications and API (Application Programming Interface).
It's based on the Werkzeug toolkit and Jinja2 template. Instead of using complex architecture, Flask is a small web framework that
easy-to-extent the core and is easy to learn because Flask has less code. Flask doesn't include the ORM but still has cool features
like URL routing and a template engine.

Gunicorn or "Green Unicorn" is a WSGI HTTP Server with pre-fork worker mode. It's ported from the Ruby's Unicorn project.
Gunicorn can be paired with several web frameworks, it's lightweight on server resources and fast. Gunicorn stands between your
application and the web server, so you can pair the Gunicorn with a web server such as Nginx and Apache2.

The following guide will show you how to get started with Flask on Debian 12. You will install Flask, and create the first Flask
application, then you will also configure the Flask application to run the Gunicorn, Supervisor, and Nginx web server.

Prerequisites

To proceed with this guide, have ready:
e A Debian 12 machine - Server or Desktop edition.
e A non-root user with sudo administrator privileges.

Installing Dependencies

Before installing Flask, you must ensure dependencies are installed on your system, such as Python 3.11, Pip, and venv module
for creating Python virtual environment, Nginx that will be used as a reverse proxy, and Supervisor for managing the Flask
application.

Complete the following steps to install dependencies for Flask.

First, run the apt update command below to refresh your Debian package index.

sudo apt update :

Once the package index is updated, execute the apt install command below to install package dependencies. This includes pip,
venv, Nginx, and supervisor.

. sudo apt install python3 python3-pip python3-venv nginx supervisor

Type y to confirm the installation and press ENTER to proceed.

root@debianl2:~
» apt dinstall p 3 python3-pip pyth
3.« Done
ilding depend 2. Done
leading state ir Done
python3 is a a on (3.11.2-1+b1).
python i
The following addit
build-es ial cpp
libalgor diff-perl L L ar i th
libc-11¢ c6 Libc ev 1 8 1ib v 1 de 11
Llibfont figl libgavli-1 li ’ 13 1ib libhe
liblerca 1 8@ libmpe3 1 r av lib Libpy
libtirpc-dev 14 2 libub Libweb 1x11-6 Ll-data
oy thon pythe stutils
ICSVE zlibl

le ¢ debian-keyring il 12-mu

E
ultilib glibc-doc nis libnss-nispl r bzr libgd-tools
etuptools-doc = ar—doc

L be insta

build- ntial cpr dpkg-dev fa t fontconfig fonts-dejay re g++ g++-12 gcc 12 j
libalgorit T Libalgorithm-diff-xs y balgor i pe libatomicl Llib:
libececl Libdav1ldé libd 5-8 libdeflate@ 1ibdpk, J h ot libfile
" libgompl libheifl libisl23 libitml libjbige ibjs-j

ibnsl ibnumal libpython3-dev libpython3.1l1-dev Llibc L +

i bwe! bx11-6 libxll-data 1ibx265-199 libxaué libxchb) pmd Llibyuv® Llinux-libec-d
python distutils python3=1ib2to2 python3-pip python3-g setuptools python3-setup
python3. on3.11-\ zliblg-dev

following pac |
bin 1i libcé locales
upgraded , ew installed, 8 to remove and 38 not upgraded.
Need to get 94.8 MB of archi

When everything is installed, run the following command to set up the default python command to python3.

sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 10

Then verify the version of python, pip, and venv by executing the following command. This will ensure that required Python
dependencies are installed.

python --version
. pip --version
. python -m venv -v

You should get similar output like this:

ip (python 3.1

without-pip] [--1 WPT] [--upgr

Next, verify the Nginx service using the systemctl command below to ensure that the service is enabled and running.

sudo systemctl is-enabled nginx
sudo systemctl status nginx

An output enabled confirms that Nginx will start automatically at system boot. And the status active (running) indicates that
Nginx is running.

Lastly, verify the supervisor service to ensure that the service is enabled and running.

i sudo systemctl is-enabled supervisor
sudo systemctl status supervisor

A similar output will be shown like this on your terminal:

atus supervisor
- AErEal

Act

D
Main PID:

Installing Flask and Gunicorn

In the following step, you will install Flask via pip and venv virtual environment. So, you will also learn how to create and
manage Python virtual environment with Python module venv.

Create a new project directory,~/testapp and move into it via the cd command.

mkdir -p ~/testapp; cd ~/testapp

Create a new virtual environment venv using the command below. The new directory venv will be created after the command is
executed.

python -m venv venv
Activate the venv virtual environment using the following command. Once activated, your shell prompt should become like
(venv) user@hostname...

anl2:~/testapp$ source venv/activate
venv/activate: No such file or directory

(venv)

pip install flask gunicorn

When the installation starts, you should get the following output:

(venv) ali bia
(venv) janl.
Collecting flask
Downloading Flask-2.3.2-py3-none-any.whl (96 kB)

*uni corn
unicorn-21, any.whl

Collecting W

Collecting 2J
Downloadin nj : none-any.whl (133 kB)

“ollec 5
Downloadin '-py3-none-any (15
Collecting c
ne-any 97 kB)

In case you want to deactivate from the venv virtual environment, use the following command.

deactivate

Creating First App with Flask

After Flask is installed on the virtual environment, now you will create the first Flask.application that will show you a simple
HTML page. You will also learn how to run and manage the Flask application.

Create a new file testapp.py using your preferable editor. The following example uses nano.

nano testapp.py

Insert the following Python script to create the first Flask application. The following code will render the index. htm! file within
the default templates directory.

testapp.py
from flask import Flask, render template # importing the render template function

app = Flask(__name_)
route to index page
@app.route("/")
def hello():
return render_template('index.html")

if name == ' main_ ':
app.run(debug=True)

When finished, save and exit the file.

Now create a new templates directory and create a new file index.html.

mkdir -p templates

nano templates/index.html

Insert the following HTML script into the file.

<html>
<body>
<hl><center>Hello Flask - Nginx and Gunicorn Debian 12!'</center></hl>
</body>
</html>

Save the file and exit the editor.

To test your application, run the testapp.py using from your shell like this:

Open another terminal and connect to the server, then run the curl command below o verify your Flask application.

curl http://localhost:5000/
If everything goes well, you should see the source code of the index.html file that you've created.

et
:~5 curl http://1 Lhost:5600/

nter>Hello Flask Ng- 1 Debian 12!</c

</body>
</html>alic

You can now press Ctrl+c to terminate the process of your Flask application.

Running Flask Application with wsgi and Gunicorn

In this step, you will learn how to set up your Flask application to run with Gunieorn. The Gunicorn is a web server gateway
interface HTTP server and supports multiple web frameworks, including Flask:

Create a new file wsgi.py in the same directory as festapp.py using the following editor.

nano wsgi.py

Insert the following Python secript to integrate your Flask application with Gunicorn.

import testapp Flask application
from testapp import app

if name_ == " main_":
app.run(debug=True)

Save and exit the file when finished.

To ensure that your installation is successful, run the gunicorn command below. This will start your Flask application on port
8080 via the wsgi script and gunicorn.

gunicorn -w 4 --bind 0.0.0.0:8080 wsgi:app

If successful, you should see an output like this:

IN E ti rker with pid: 9607
[INFO] Booting worker with pid: 9668
[INFO] Booting worker with pid: 9609
[INFO] Booting worker with pid: 9616

Now launch your web browser and visit the server IP address followed by port 8080, i.e: http://192.168.01.15:8080/. If
everything goes well, you should get the index.html! page that you've created.

O & 192168.10.156

Hello Flask - Nginx and Gunicorn Debian 12!

Lastly, press Ctrl+c to terminate the Gunicorn process.

Running Flask Application with Supervisor

After configuring Flask with Guncorn, the next step you will integrate your Flask application with Supervisor. This allows you to
manage Flask applications easily via a single command line supervisorctl, which is a command line interface for Supervisor.

Create a new supervisor configuration /etc/supervisor/conf.d/testapp.confusing the following nano editor command.
sudo nano /etc/supervisor/conf.d/testapp.conf

Insert the following configuration and be sure to change the details user, path Flask installation directory, and the app name.

[program: testapp]

command=/bin/bash -c 'source /home/alice/testapp/venv/bin/activate; gunicorn -w 3 --bind unix:/home/alice/testapp/testapp.sock wsgi:app'
directory=/home/alice/testapp

user=alice

group=www-data

autostart=true

autorestart=true

stdout logfile=/home/alice/testapp/testapp.log

stderr _logfile=/home/alice/testapp/error.log

Save and close the file when finished.

Next, run the following systemctl command to restart the supervisor service and apply the changes. Then, verify the supervisor's
service to ensure that the service is running.

sudo systemetl restart supervisor
sudo systemctl status supervisor

The output below indicates the supervisor service is running.

Lastly, execute the supervisoreti command below to verify the list of processes that running under the supervisor.

sudo supervisorctl status

If goes well, you should see the testapp is running under the supervisor, which is running via unix socket
/home/alice/testapp/testapp.sock.

You can also verify the UNIX socket /home/alice/testapp/testapp.sock using the below command.

ss -pl | grep testapp.sock

Setting up Nginx as a Reverse Proxy

At this point, your Flask application is running in the background under the Supervisor. To make your application accessible, you

will set up the reverse proxy, which you will be using is Nginx.

Create a new Nginx server block configuration /fetc/nginx/sites-available/testapp using the following nano editor command.

sudo nano /etc/nginx/sites-available/testapp

Insert the following configuration and change the server name with your local domain name.

server {
listen 80;
server name testapp.local;

location / {
include proxy params;

proxy pass http://unix:/home/alice/testapp/testapp.sock;

i

Save the file and exit when you're done.

Now run the following command to activate the server block configuration testapp. Then verify the Nginx configuration to

ensure that you've proper syntax.

sudo ln -s /etc/nginx/sites-available/testapp /etc/nginx/sites-enabled/

sudo nginx -t

Janv)
(veny) 2

tefnginx/sites-available/tes . .pp

~$ sudo nginx -t

nginx: the conf on file Jfetc/nginx/nginx.conf syntax is ok

nginx: configurat

fetr fnadny fmnedny ranf fped de enirrpees £y

(venv) alicefdebian

(venv) al

ebianl2:-3 '

testapp fetc/nginx/sites-enabled/

Lastly, run the systemct!/ command below to restart the Nginx service and apply the changes. Then, verify it to ensure that the

service is running.
sudo systemctl restart nginx

sudo systemctl status nginx

(venv) al
[(venv)
[(venv)

Process

Process:
Main PID:
Tashks:
Memory :

do systemctl restart nginx
sudo systemctl status nginx
e = A performance web server and a reverse proxy server
Loaded ‘systemd/system/nginx.service; led; preset: e
“tivr

startPre=jfusr/sbin/nginx -t -q -g daemon on; master_proc
Sbu4 ExecStart=fusr/sbin/nginx -g daemon on; master_process onj (code
9695 (nginx)
3 (limit: 4642)
2.3M

Accessing Flask Application

de=exited, status=8/SUCCESS)

caited, status=9{5UCCESS]

If you're using a Linux client machine, use the following nano editor to edit the /etc/hosts file.

i sudo nano /etc/hosts i

e B e T e e T e e e BT e T Y ST BT O]

Insert the domain name of your Flask application and the server IP address like this:

192.168.10.15 testapp.local

Save the file and exit the editor when you're done.

Now launch your web brow:
you should see the HTML

isit the domain name of your Flask application http://testapp.local/. If everything goes well,

Conclusion

As a wrap of this guide, you have finished t
how to create and manage Python virtual e
Supe ginx reverse proxy. Furthe

MySC ||I and PostgreSQL.

