
Comment installer Flask avec Nginx et Gunicorn sur Debian

12
Flask	is	a	microframework	written	in	Python	for	developing	modern	web	applications	and	API	(Application	Programming	Interface).	
It's	based	on	the	Werkzeug	toolkit	and	Jinja2	template.	Instead	of	using	complex	architecture,	Flask	is	a	small	web	framework	that	
easy-to-extent	the	core	and	is	easy	to	learn	because	Flask	has	less	code.	Flask	doesn't	include	the	ORM	but	still	has	cool	features	
like	URL	routing	and	a	template	engine.

Gunicorn	 or	 "Green	Unicorn"	 is	 a	WSGI	HTTP	Server	with	 pre-fork	worker	mode.	 It's	 ported	 from	 the	Ruby's	Unicorn	 project.	
Gunicorn	can	be	paired	with	several	web	frameworks,	it's	lightweight	on	server	resources	and	fast.	Gunicorn	stands	between	your	
application	and	the	web	server,	so	you	can	pair	the	Gunicorn	with	a	web	server	such	as	Nginx	and	Apache2.

The	following	guide	will	show	you	how	to	get	started	with	Flask	on	Debian	12.	You	will	install	Flask,	and	create	the	first	Flask	
application,	then	you	will	also	configure	the	Flask	application	to	run	the	Gunicorn,	Supervisor,	and	Nginx	web	server.

Prerequisites
To	proceed	with	this	guide,	have	ready:

A	Debian	12	machine	-	Server	or	Desktop	edition.
A	non-root	user	with	sudo	administrator	privileges.

Installing	Dependencies
Before	installing	Flask,	you	must	ensure	dependencies	are	installed	on	your	system,	such	as	Python	3.11,	Pip,	and	venv	module
for	creating	Python	virtual	environment,	Nginx	that	will	be	used	as	a	reverse	proxy,	and	Supervisor	for	managing	the	Flask
application.

Complete	the	following	steps	to	install	dependencies	for	Flask.

First,	run	the	apt	update	command	below	to	refresh	your	Debian	package	index.

sudo	apt	update

Once	the	package	index	is	updated,	execute	the	apt	install	command	below	to	install	package	dependencies.	This	includes	pip,
venv,	Nginx,	and	supervisor.

sudo	apt	install	python3	python3-pip	python3-venv	nginx	supervisor

Type	y	to	confirm	the	installation	and	press	ENTER	to	proceed.

When	everything	is	installed,	run	the	following	command	to	set	up	the	default	python	command	to	python3.

sudo	update-alternatives	--install	/usr/bin/python	python	/usr/bin/python3	10

Then	verify	the	version	of	python,	pip,	and	venv	by	executing	the	following	command.	This	will	ensure	that	required	Python
dependencies	are	installed.

python	--version
pip	--version
python	-m	venv	-v

You	should	get	similar	output	like	this:

Next,	verify	the	Nginx	service	using	the	systemctl	command	below	to	ensure	that	the	service	is	enabled	and	running.

sudo	systemctl	is-enabled	nginx
sudo	systemctl	status	nginx

An	output	enabled	confirms	that	Nginx	will	start	automatically	at	system	boot.	And	the	status	active	(running)	indicates	that
Nginx	is	running.

Lastly,	verify	the	supervisor	service	to	ensure	that	the	service	is	enabled	and	running.

sudo	systemctl	is-enabled	supervisor
sudo	systemctl	status	supervisor

A	similar	output	will	be	shown	like	this	on	your	terminal:

Installing	Flask	and	Gunicorn
In	the	following	step,	you	will	install	Flask	via	pip	and	venv	virtual	environment.	So,	you	will	also	learn	how	to	create	and
manage	Python	virtual	environment	with	Python	module	venv.

Create	a	new	project	directory	~/testapp	and	move	into	it	via	the	cd	command.

mkdir	-p	~/testapp;	cd	~/testapp

Create	a	new	virtual	environment	venv	using	the	command	below.	The	new	directory	venv	will	be	created	after	the	command	is
executed.

python	-m	venv	venv

Activate	the	venv	virtual	environment	using	the	following	command.	Once	activated,	your	shell	prompt	should	become	like
(venv)	user@hostname...

source	venv/bin/activate

After	venv	is	activated,	execute	the	following	pip	command	to	install	Flask	and	Gunicorn.

pip	install	flask	gunicorn

When	the	installation	starts,	you	should	get	the	following	output:

In	case	you	want	to	deactivate	from	the	venv	virtual	environment,	use	the	following	command.

deactivate

Creating	First	App	with	Flask
After	Flask	is	installed	on	the	virtual	environment,	now	you	will	create	the	first	Flask	application	that	will	show	you	a	simple
HTML	page.	You	will	also	learn	how	to	run	and	manage	the	Flask	application.

Create	a	new	file	testapp.py	using	your	preferable	editor.	The	following	example	uses	nano.

nano	testapp.py

Insert	the	following	Python	script	to	create	the	first	Flask	application.	The	following	code	will	render	the	index.html	file	within
the	default	templates	directory.

#	testapp.py
from	flask	import	Flask,	render_template		#	importing	the	render_template	function

app	=	Flask(__name__)
#	route	to	index	page
@app.route("/")
def	hello():
				return	render_template('index.html')

if	__name__	==	'	__main__':
				app.run(debug=True)

When	finished,	save	and	exit	the	file.

Now	create	a	new	templates	directory	and	create	a	new	file	index.html.

mkdir	-p	templates

nano	templates/index.html

Insert	the	following	HTML	script	into	the	file.

<html>
				<body>
								<h1><center>Hello	Flask	-	Nginx	and	Gunicorn	Debian	12!</center></h1>
				</body>
</html>

Save	the	file	and	exit	the	editor.

To	test	your	application,	run	the	testapp.py	using	from	your	shell	like	this:

flask	--app	testapp	run

In	the	following	output,	you	should	see	that	your	Flask	application	is	running	on	localhost	with	default	port	5000.

Open	another	terminal	and	connect	to	the	server,	then	run	the	curl	command	below	o	verify	your	Flask	application.

curl	http://localhost:5000/

If	everything	goes	well,	you	should	see	the	source	code	of	the	index.html	file	that	you've	created.

You	can	now	press	Ctrl+c	to	terminate	the	process	of	your	Flask	application.

Running	Flask	Application	with	wsgi	and	Gunicorn
In	this	step,	you	will	learn	how	to	set	up	your	Flask	application	to	run	with	Gunicorn.	The	Gunicorn	is	a	web	server	gateway
interface	HTTP	server	and	supports	multiple	web	frameworks,	including	Flask.

Create	a	new	file	wsgi.py	in	the	same	directory	as	testapp.py	using	the	following	editor.

nano	wsgi.py

Insert	the	following	Python	script	to	integrate	your	Flask	application	with	Gunicorn.

#	import	testapp	Flask	application
from	testapp	import	app

if	__name__	==	"__main__":
				app.run(debug=True)

Save	and	exit	the	file	when	finished.

To	ensure	that	your	installation	is	successful,	run	the	gunicorn	command	below.	This	will	start	your	Flask	application	on	port
8080	via	the	wsgi	script	and	gunicorn.

gunicorn	-w	4	--bind	0.0.0.0:8080	wsgi:app

If	successful,	you	should	see	an	output	like	this:

Now	launch	your	web	browser	and	visit	the	server	IP	address	followed	by	port	8080,	i.e:	http://192.168.01.15:8080/.	If
everything	goes	well,	you	should	get	the	index.html	page	that	you've	created.

Lastly,	press	Ctrl+c	to	terminate	the	Gunicorn	process.

Running	Flask	Application	with	Supervisor
After	configuring	Flask	with	Guncorn,	the	next	step	you	will	integrate	your	Flask	application	with	Supervisor.	This	allows	you	to
manage	Flask	applications	easily	via	a	single	command	line	supervisorctl,	which	is	a	command	line	interface	for	Supervisor.

Create	a	new	supervisor	configuration	/etc/supervisor/conf.d/testapp.conf	using	the	following	nano	editor	command.

sudo	nano	/etc/supervisor/conf.d/testapp.conf

Insert	the	following	configuration	and	be	sure	to	change	the	details	user,	path	Flask	installation	directory,	and	the	app	name.

[program:testapp]	
command=/bin/bash	-c	'source	/home/alice/testapp/venv/bin/activate;	gunicorn	-w	3	--bind	unix:/home/alice/testapp/testapp.sock	wsgi:app'
directory=/home/alice/testapp
user=alice
group=www-data
autostart=true	
autorestart=true	
stdout_logfile=/home/alice/testapp/testapp.log	
stderr_logfile=/home/alice/testapp/error.log

Save	and	close	the	file	when	finished.

Next,	run	the	following	systemctl	command	to	restart	the	supervisor	service	and	apply	the	changes.	Then,	verify	the	supervisor's
service	to	ensure	that	the	service	is	running.

sudo	systemctl	restart	supervisor
sudo	systemctl	status	supervisor

The	output	below	indicates	the	supervisor	service	is	running.

Lastly,	execute	the	supervisorctl	command	below	to	verify	the	list	of	processes	that	running	under	the	supervisor.

sudo	supervisorctl	status

If	goes	well,	you	should	see	the	testapp	is	running	under	the	supervisor,	which	is	running	via	unix	socket
/home/alice/testapp/testapp.sock.

You	can	also	verify	the	UNIX	socket	/home/alice/testapp/testapp.sock	using	the	below	command.

ss	-pl	|	grep	testapp.sock

Setting	up	Nginx	as	a	Reverse	Proxy
At	this	point,	your	Flask	application	is	running	in	the	background	under	the	Supervisor.	To	make	your	application	accessible,	you
will	set	up	the	reverse	proxy,	which	you	will	be	using	is	Nginx.

Create	a	new	Nginx	server	block	configuration	/etc/nginx/sites-available/testapp	using	the	following	nano	editor	command.

sudo	nano	/etc/nginx/sites-available/testapp

Insert	the	following	configuration	and	change	the	server_name	with	your	local	domain	name.

server	{
				listen	80;
				server_name	testapp.local;

				location	/	{
								include	proxy_params;
								proxy_pass	http://unix:/home/alice/testapp/testapp.sock;
				}
}

Save	the	file	and	exit	when	you're	done.

Now	run	the	following	command	to	activate	the	server	block	configuration	testapp.	Then	verify	the	Nginx	configuration	to
ensure	that	you've	proper	syntax.

sudo	ln	-s	/etc/nginx/sites-available/testapp	/etc/nginx/sites-enabled/
sudo	nginx	-t

If	successful,	you	should	get	the	output	Syntax	is	OK	-	Test	is	successful.

Lastly,	run	the	systemctl	command	below	to	restart	the	Nginx	service	and	apply	the	changes.	Then,	verify	it	to	ensure	that	the
service	is	running.

sudo	systemctl	restart	nginx
sudo	systemctl	status	nginx

The	following	output	indicates	that	the	Nginx	service	status	is	running.

Accessing	Flask	Application

If	you're	using	a	Linux	client	machine,	use	the	following	nano	editor	to	edit	the	/etc/hosts	file.

sudo	nano	/etc/hosts

Insert	the	domain	name	of	your	Flask	application	and	the	server	IP	address	like	this:

192.168.10.15			testapp.local

Save	the	file	and	exit	the	editor	when	you're	done.

Now	launch	your	web	browser	and	visit	the	domain	name	of	your	Flask	application	http://testapp.local/.	If	everything	goes	well,
you	should	see	the	HTML	page	of	your	Flask	application.

Conclusion
As	a	wrap	of	this	guide,	you	have	finished	the	installation	of	Flask	with	Gunicorn	and	Nginx	on	Debian	12.	You've	also	learned
how	to	create	and	manage	Python	virtual	environment	and	created	the	first	Flask	application	that	runs	in	the	background	under
Supervisor	and	Nginx	reverse	proxy.	Further	guide,	you	may	interest	to	create	Flask	applications	with	RDBMS	databases	such	as
MySQL/MariaDB	and	PostgreSQL.

